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A B S T R A C T

A suite of historical atmospheric model simulations is described that uses a hierarchy of global boundary forcings
designed to inform research on the detection and attribution of weather and climate-related extremes. In addition
to experiments forced by actual variations in sea surface temperature, sea ice concentration, and atmospheric
chemical composition (so-called Factual experiments); additional (Counterfactual) experiments are conducted in
which the boundary forcings are adjusted by removing estimates of long-term climate change. A third suite of
experiments are identical to the Factual runs except that sea ice concentrations are set to climatological conditions
(Clim-Polar experiments). These were used to investigate the cause for extremely warm Arctic surface tempera-
ture during 2016.

Much of the magnitude of surface temperature anomalies averaged poleward of 65�N in 2016 (3.2 ± 0.6 �C
above a 1980–89 reference) is shown to have been forced by observed global boundary conditions. The Factual
experiments reveal that at least three quarters of the magnitude of 2016 annual mean Arctic warmth was forced,
with considerable sensitivity to assumptions of sea ice thickness change. Results also indicate that 30–40% of the
overall forced Arctic warming signal in 2016 originated from drivers outside of the Arctic. Despite such remote
effects, the experiments reveal that the extreme magnitude of the 2016 Arctic warmth could not have occurred
without consideration of the Arctic sea ice loss. We find a near-zero probability for Arctic surface temperature to
be as warm as occurred in 2016 under late-19th century boundary conditions, and also under 2016 boundary
conditions that do not include the depleted Arctic sea ice. Results from the atmospheric model experiments are
reconciled with coupled climate model simulations which lead to a conclusion that about 60% of the 2016 Arctic
warmth was likely attributable to human-induced climate change.
1. Introduction

NOAA's Arctic Report (Overland et al., 2016a) indicated that the
annual surface air temperature anomaly in 2016 for land areas north of
60�N far exceeded the highest in the observational record since 1900.
Further, the 2016 anomaly was double the magnitude during just the
prior year. In this study, a set of historical climate model simulations are
introduced that contribute to the Climate of the Twentieth Century
Detection and Attribution Project (Folland et al., 2014). These simula-
tions are used to determine the drivers of extreme Arctic warmth in 2016.

Record setting Arctic warmth in 2016 did not come entirely as a
surprise. A prolonged warming of annual Arctic surface temperatures
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has been observed since the late 1970s (Overland et al., 2016a),
despite appreciable superposed intrinsic decadal variability (e.g. Pol-
yakov et al., 2002). The recent Arctic warming has occurred in tandem
with temperature rises in middle and lower latitudes, suggesting that it
is part of an overall global warming pattern (e.g. Serreze and Francis,
2006). Most of the Arctic warming since 1979 has occurred during fall
and winter, with observational studies (e.g. Screen and Simmonds,
2010) and climate model experiments (e.g. Screen et al., 2013a, b;
Perlwitz et al., 2015) indicating sea ice loss to have been a major
driver. Given that 2016 Arctic sea ice extent was itself near a record
low,1 boundary conditions were conducive for high Arctic surface
temperatures.
d November. http://nsidc.org/arcticseaicenews/2017/01/low-sea-ice-extent-continues-in-
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Lest the impression be that extreme Arctic warmth was unavoidable
and that the record-setting conditions in 2016 could have been readily
anticipated, several lines of evidence also indicate an appreciable
random, unforced contribution. For instance, multi-model simulations of
the Coupled Model Intercomparison Project (CMIP5) were used to
examine how global warming contributed to the remarkable Novem-
ber–December 2016 warmth near the North Pole (van Oldenborgh et al.,
2017). Results indicated that the magnitude of warmth was an extreme
condition relative to the global warming signal itself, and as such was a
low probability outcome in 2016. Likewise, Kim et al. (2017) examined
impacts of intense Storm Frank during January 2016 when daily Arctic
surface temperatures were as much as 30 �C above average, revealing the
importance of weather-driven heat and moisture transports.

Quantifying the effects of various drivers is central to explaining how
extreme Arctic warmth can arise, to understanding why it happened in
2016 specifically, and to better anticipating future occurrences of
extreme Arctic events. In this study we first pose the question whether
the magnitude of the observed annual surface air temperature anomalies
averaged poleward of 65�N were reconcilable with boundary forcing
during 2016 alone using a unique set of atmospheric model simulations.
Our modeling approach should be distinguished from a purely CMIP5
approach (e.g. van Oldenborgh et al., 2017) in so far as the particular
observed ocean and sea ice conditions of 2016 are treated as forcings in
the model experiments used herein. We then inquire about the character
of the boundary forcing by using a set of experiments driven by realistic
and idealized representations of global boundary conditions. Among
various questions these experiments address, one focuses upon whether
the extreme warmth arose mostly from drivers within or outside of the
Arctic. We also explore the extent to which the extreme articulation of
2016 Arctic warmth may have resulted from an appreciable impetus
provided by purely random variability. It is apparent from synoptic
analysis of Arctic weather conditions in 2016 (e.g. Kim et al., 2017;
Overland and Wang, 2016) that weather driving was important, and that
such weather driving likely affected the sea ice boundary conditions.
Thus, consistent with estimates that about 40% of Arctic sea ice loss since
1979 is due to internal atmospheric variability (Ding et al., 2017), esti-
mates of the random component of 2016 warmth must address such in-
ternal coupled feedbacks. Our analysis therefore also examines coupled
model simulations that span the same historical record as our atmo-
spheric simulations, and which involve large ensembles to facilitate
diagnosis of the magnitude for internal coupled noise.

We describe in Section 2 our suite of atmospheric model simulations
that employ boundary forcings representative of 2016 conditions for a
factual (observed) and counterfactual (absent long-term climate change)
world. The rationale is to create an experimental dataset, routinely
updated and made available to the broader scientific community, that
can be used to isolate contributions of specific drivers to observed climate
variability and extreme events. The experimental methods involve large
ensemble simulations for each configuration of boundary forcing,
thereby permitting diagnosis of contributions by various drivers and also
by internal atmospheric variability. A feature of the experimental suite is
that in addition to runs forced by the actual variations in sea surface
temperature, sea ice concentration, and atmospheric chemical composi-
tion (the standard Atmospheric Model Intercomparison Project (AMIP)
configuration); additional experiments are conducted in which the
boundary forcings are adjusted by removing plausible estimates of the
effects of long-term climate change. Section 2 describes how these
counterfactual boundary conditions were constructed and addresses
implications of various simplifying assumptions.

The application of these experiments toward an attribution of the
2016 extreme Arctic warmth is presented in Section 3. It is demonstrated
that roughly three quarters of the magnitude of 2016 annual mean Arctic
warmth was likely a forced signal owing to the particular global ocean
boundary conditions. Of this forced signal, about 30–40% likely arose
from drivers outside of the Arctic, while Arctic sea ice loss accounted for
60–70% with estimates sensitive to assumptions of sea ice thickness
2

change. The Discussion section compares results on the drivers of 2016
Arctic warmth drawn from our atmospheric model experiments with
results using transient coupled climate model simulations.

2. Observed data and model experiments

2.1. Observations

Near-surface air temperatures are based on five reanalysis products—
NCEP/NCAR (R1; Kalnay et al., 1996), ERA-Interim (Dee et al., 2011),
NASA-MERRA-2 (Gelaro et al., 2017), and two versions of JRA-55 ana-
lyses that involve different treatments of the near-surface air temperature
(Kobayashi et al., 2015). The common period for these products is
1980–2016. Annual surface air temperatures are area-averaged for the
region 65�N-90�N, and anomalies are calculated with respect to each
product's 1980-89 mean.

Two sea surface temperature (SST) data sets are used to investigate
long-term change since 1880. We use the NOAA Extended Reconstructed
Sea Surface Temperature v3 (ERSSTv3) (Smith et al., 2008), results from
which are compared to the Hadley Center Global Sea Ice and Sea Surface
Temperature v1 (HadISSTv1) data (Rayner et al., 2003).

2.2. Atmospheric model and experiments

The atmospheric model used in support of the Climate of the 20th
Century Detection and Attribution Product is the European Center for
Medium RangeWeather Forecast/Hamburg (ECHAM5) model (Roeckner
et al., 2003). The model is run at a spectral resolution of T159 (~85 km
horizontal resolution) and 31 vertical levels having a model top at
about 1 hPa.

In its standard AMIP configuration (hereafter, Factual experiment),
ECHAM5 is forced by specifying observed monthly variations in SST
and sea ice concentration as derived from Hurrell et al. (2008).
Greenhouse gases (GHGs) vary according to the observed concentra-
tions and their extension after 2005 assuming Representative Concen-
tration Pathway 6.0 (RCP6.0) (Meinshausen et al., 2011). Monthly
evolving tropospheric and stratospheric ozone also vary based on
Cionni et al. (2011). Aerosol concentrations do not vary interannually
in ECHAM5, and a specified repeating seasonal cycle is derived from an
aerosol model described in Tanre et al. (1984). The experiments are
from January 1979–December 2016. A 30-member ensemble of simu-
lations is generated in which each member experiences identical time
evolving boundary forcings, but is begun from different atmospheric
initial states in January 1979.

Two additional parallel experiments are performed in which the
boundary and external forcings are modified. In one suite (hereafter,
Counterfactual experiment), the model is forced with monthly varying
boundary conditions that retain the interannual and decadal variability
as occurring in the Factual experiment, but in which the long-term trends
in the boundary forcings have been removed. For external radiative
forcing in these Counterfactual experiments, GHG and ozone concen-
trations are simply set to their 1880 values. For the SSTs, an approxi-
mation of 1880 conditions is generated by removing a 1880–2011 linear
SST trend from the monthly variability. Sea ice concentrations are set to a
1979–1989 climatological mean globally, a period that mostly precedes
the time of substantial decline in Arctic sea ice that culminated in the
near-record low concentrations during 2016. In the second suite (here-
after, Clim-Polar experiment), all boundary conditions and external
radiative forcings are identical to those specified in the Factual runs,
except that global sea ice concentrations are set to a 1979–1989 clima-
tological mean. Each suite spans 1979–2016 and includes 30-member
ensembles. Table 1 summarizes these three sets of experiments and their
specified boundary forcings.

When diagnosing the 2016 Arctic extreme warmth, the model spread
is represented by the 95% confidence bound across 30 members of
simulations based on student's t-test. The contribution from the drivers



Table 1
The various ECHAM5 simulations used in this study, and description of the radiative
forcing and lower boundary conditions for each experiment.

Experiments Radiative Forcing
(including O3)

Sea Surface
Temperature (SST)

Sea Ice
Concentration

Factual 1979–2016a 1979–2016 1979–2016
Counterfactual 1880 Residual 1979–2016b Climatology

1979–1989 Mean
Clim-Polar 1979–2016a 1979–2016 except

over the Arcticc
Climatology
1979–1989 Mean

a From 1979 to 2005, the observed radiative forcing is used; from 2006 to 2016 the
RCP6.0 radiative forcing is used.

b In Counterfactual experiment, an approximation of pre-industrial SST condition is
generated by removing a 1880–2011 linear zonal-mean SST trend from the 1979–2016
monthly data. The purpose is to remove the observed SST warming trend while retaining
the SST variability. See section 2.2, 2.3 for details.

c In Clim-Polar experiment, the observed SSTs are prescribed from 1979 to 2016 except
in the Arctic sea ice loss region, where the 1979–1989 climatology is used as consideration
for the sea ice loss-induced SST increase. See Perlwitz et al. (2015) for details.
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outside of the Arctic to the total 2016 extremewarmth is estimated by the
ratio of the ensemble mean of the Clim-Polar to the Factual experiment.

2.3. Counterfactual boundary conditions

Various assumptions in constructing the counterfactual forcings were
made. One is that the long-term SST change can be described by a linear
trend since 1880. Fig. 1 (top) shows the time series of the globally
averaged annual SSTs for 1880–2016, and the red curve denotes the
Fig. 1. (Top) Time series of observed globally averaged annual SST (black curve; �C) and its 188
curve; 106 km2) and its 1979–1989 climatology (dashed curve).

3

1880–2011 linear trend. (We note that this linear fit was computed from
available data up to commencement of our experiments in 2012, and for
consistency with our regular updates through time, we extend this trend
to recent years rather than re-calculate and update the trend annually.)
Our linear fit to the time series underestimates the magnitude of SST
warmth post-1990. As such our estimates of the long-term climate change
contribution to the recent 2016 extreme conditions may likewise be
underestimated.

We use the ERSSTv3b data to estimate the long-term trend, and there
are appreciable differences among SST data sets. Fig. 2 compares the
1880–2011 linear trend in annual SSTs using the NOAA ERSSTv3b data
(top) with the HadISSTv1 data (middle). Left-side panels show trends
computed at each grid point, and the right-side panels show the zonal
averages of the SST trends. For the former metric, differences in trends
are substantial, including equatorial central Pacific cooling in HadISSTv1
compared to warming in the ERSSTv3b. We utilize the latter data set in
part because of indications of long-term warming in the equatorial
eastern Pacific based on examination of uninterpolated SST and marine
air temperature data sets (Deser et al., 2010), but the uncertainty in
regional SST trend patterns over the eastern equatorial Pacific is high
(e.g. Solomon and Newman, 2012).

Given this uncertainty in the pattern of SST change since 1880, and
the confounding issue that local trend features can be prone to effects of
internal variability, our approach in constructing the counterfactual is to
remove the 1880–2011 trend in zonal mean SSTs from the actual
observed SSTs. The zonal mean patterns of the ERSSTv3b are quite
similar to those occurring in the average of the 37-member so-called “All-
0–2011 linear trend (red curve). (Bottom) Time series of annual Arctic sea ice extent (solid
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Forcings” experiments of CMIP5 (Fig. 2, bottom) suggesting that the
former is consistent with a pattern of externally forced change. None-
theless, it should be stressed that herein we use a single SST change
pattern in creating the counterfactual forcing that is specified in our
ECHAM5 experiments. Other assumptions on long-term change in
boundary conditions could be made; however, it is beyond the scope of
the current study to address this source of uncertainty (see also Christidis
et al., 2013).

Regarding the counterfactual assumption of Arctic sea ice extent
change, it is evident from the annual sea ice time series (Fig. 1, bottom)
that most of the decline occurs post-1990. We therefore use a reference
sea ice condition of 1979-89 to denote the period of Arctic boundary
forcing that is mostly antecedent to appreciable climate change. This
choice is a compromise to take advantage of a consistent satellite-era
record of high quality sea ice observations since 1979 which likely
captures the majority of long-term decline (Walsh et al., 2016) versus
attempting to estimate late-19th century sea ice from sparse and much
less reliable data. A further aspect of sea ice change involves ice thick-
ness. In each of the three suites of ECHAM5 experiments, sea ice
thickness is assumed to be a constant 2 m value that is invariant through
time during 1979–2016. Yet, analysis of data from the Pan-Arctic Ice
Ocean Modeling and Assimilation System (PIOMAS, Zhang and Roth-
rock, 2003) indicates that sea ice thickness was substantially reduced in
2016 compared to a 1980–89 reference (Fig. S1 in the supplementary
material), and previous modeling studies point to a sensitivity of at-
mospheric response to prescribed thickness changes especially during
winter (Rinke et al., 2006; Krinner et al., 2010; Lang et al., 2017). To
address the sensitivity of our Factual experiment results to sea ice
thickness decline, an additional 30-member Factual experiment is con-
ducted, covering 2016, in which sea ice thickness is reduced to 1 m at all
Fig. 2. 1880–2011 linear SST trend (�C) computed at each grid point (left) and zonal-average
models subjected to “All Forcings” during historical period and RCP8.5 emission scenario after
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locations having sea ice concentration. While this is an idealization of
the PIOMAS spatial maps and their temporal evolution, the comparison
of the 2 m to the 1 m sea ice thickness results nonetheless gives a
measure of uncertainty in our estimate of the forced component of 2016
Arctic warmth.

3. Drivers of 2016 extreme Arctic warmth

Fig. 3a presents time series of Arctic (65�N - 90�N) annual surface air
temperature anomalies relative to a 1980–1989 climatology from the five
reanalysis datasets and from the 30-member ensemble of ECHAM5
Factual experiments. The reanalyses and simulations show an overall
Arctic warming since 1980 with a high temporal correlation (0.89)
indicative of a strongly forced warming trend. In 2016, the average of the
reanalysis products (red curve) indicates an Arctic surface air tempera-
ture anomaly of 3.2 ± 0.6 �C (95% confidence interval) while the
ensemble mean simulated anomaly is 2.4 ± 0.1 �C in the Factual exper-
iment with 2 m ice thickness. There is considerable analysis uncertainty,
with the range among the five reanalysis products being 2.4 �C–3.7 �C.
This range is large compared to the 0.25 �C standard deviation among
individual members of the model simulations.

A stronger warming is simulated in ECHAM5 when also considering
effects of sea ice thinning. Repeating the Factual experiment but speci-
fying 1m rather than 2m sea ice thickness yields a 2016 Arctic surface air
temperature anomaly of 3.1 ± 0.1 �C (blue star). This additional warming
effect in 2016 is in qualitative agreement with Lang et al. (2017), who
also found sea ice thinning to cause enhanced near-surface warming in
their atmospheric model simulations. We emphasize, however, that our
treatment of sea ice thickness is highly simplified in both Factual ex-
periments in so far as neither includes a seasonal cycle or a spatial pattern
(right) from ERSSTv3b (top), HadiSSTv1 (middle) and ensemble mean of the 37 CMIP5
2005 (bottom).



Fig. 3. (Top) Time series of Arctic surface temperature anomaly (�C) relative to the 1980–1989 climatology for the ECHAM5 Factual experiments (thin black curves: individual ensembles;
thick black curve: ensemble mean) and reanalysis datasets (thin red curves: five reanalysis results; thick red curve: average). Blue asterisk denotes the 2016 ensemble mean anomaly from
the Factual experiments with 1 m ice thickness and blue dots show the individual ensemble values. (Bottom) 2016 Arctic surface temperature anomalies from the reanalysis average (left),
Factual experiments with 2 m ice thickness (middle) and with 1 m ice thickness (right).
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to sea ice thickness variability.
Despite those limitations, various features of the spatial structure in

the 2016 warmth across the Arctic is well captured in the experiments
(Fig. 3, lower panels). For instance, both reanalysis (left) and the Factual
experiment (middle) have the largest warm anomaly over the Barents-
Kara Sea region. Warm anomalies over the Arctic Ocean tend to exceed
those over Arctic land regions in the average of reanalysis products,
which is different from the more uniform warmth in the Factual exper-
iment with 2 m ice thickness. Results from the Factual runs with 1 m ice
thickness, however, yields appreciably greater warming over the Arctic
Ocean (right) that is in closer spatial agreement with the reanalysis
product. When averaged over the Arctic as a whole, our Factual experi-
ments indicate about 75% ± 3% of the observed 2016 warmth was
forced, with an even larger fraction resulting from boundary forcing
when accounting for sea ice thinning effects.

A substantial contribution to 2016 Arctic warmth originated from
drivers outside of the Arctic. Fig. 4 compares the 1979–2016 Arctic
surface air temperature time series in the Factual experiment (repeated
for clarity in Fig. 4, top) with those in the Clim-Polar experiment (Fig. 4,
middle). A 1.0 ± 0.1 �C warm anomaly in 2016 occurs in the Clim-Polar
ensemble average, accounting for roughly 30–40% of the warm anomaly
in the Factual experiments (depending on sea ice thickness change as-
sumptions). While it is beyond the scope of this paper to determine the
physical mechanisms for the warm signal resulting from these lower
5

latitudes drivers, we speculate that most of the Arctic warming in the
Clim-Polar experiments is due to SST warming of the world oceans. The
effect of that would plausibly lead to a poleward atmospheric transport of
the resultant increased atmospheric sensible and latent energy. Likewise,
an overall rise in atmospheric water vapor associated with ocean
warming outside the Arctic could lead to increased Arctic water vapor via
transports from lower latitudes, again inducing Arctic warming but via a
mechanism of anomalous downwelling longwave radiation (e.g. Franzke
et al., 2017). It is also possible that lower latitude atmospheric circula-
tions themselves changed in response to warming oceans, either because
of internal multi-decadal variability or external forcing, again acting to
increase the poleward heat transport into the Arctic (e.g. Perlwitz
et al., 2015).

Regardless of the mechanism, the key point of Fig. 4 is that the spread
among 30-member Clim-Polar runs is small. As such the extreme 2016
Arctic warmth cannot be reconciled with drivers originating from outside
of the Arctic alone. No single member of the Clim-Polar experiment
yields a 2016 Arctic warm anomaly as large as any of the reanalysis
product estimates. The results thus indicate changes in Arctic boundary
conditions were necessary for explaining the extreme event. Of course,
those boundary conditions during 2016, especially near-record sea ice
depletion, may themselves have been appreciably perturbed by drivers
from outside the Arctic in 2016 (see Introduction). An atmospheric
modeling approach alone, however, is unable to disaggregate such



Fig. 4. Time series of Arctic surface temperature anomaly (�C; black curves) for the
ECHAM5 Factual (top), Clim-Polar (middle) and Counterfactual experiments (bottom).
The anomalies are calculated relative to the 1980–1989 climatology of the Factual ex-
periments. The thin black curves denote the individual ensembles while the thick black
curve indicates the 30- member ensemble-mean. The reanalysis results are superimposed
in all three panels for comparison (thin red curves: five reanalysis products; thick red
curve: reanalysis average). In top panel, blue asterisk denotes the 2016 ensemble mean
anomaly from the Factual experiments with 1 m ice thickness and blue dots show the
individual ensemble values.

Fig. 5. Probability density functions (PDFs) for the 2016 Arctic surface temperature
anomaly (�C) in various ECHAM5 simulations. The anomalies are calculated relative to the
1980–1989 climatology of the Factual experiments. The five reanalysis results are denoted
by tick marks (light brown for MERRA-2; forest green for JRA-55; light green for JRA-
55(Screen); red for ERA-Interim; dark brow for NCEP/NCAR reanalysis). The PDFs are
the non-parametric estimates of the frequency distributions based on Kernal density, and
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coupled interactions, and we will return to the question of coupled
variability in the paper's last section.

In the absence of long-term climate change (i.e. no changes in SSTs,
sea ice, and external radiative forcing), Arctic surface air temperatures in
2016 would not have been appreciably different from their late 19th
century climatological values. The time series of Arctic surface air tem-
perature anomalies simulated in the Counterfactual experiments (Fig. 4,
bottom) are consistently colder than the 1980-89 climatological mean of
the Factual experiment. The roughly 0.75 �C cold anomaly during the
first few years of the simulation reveals the magnitude of the Arctic
climate change signal (1880–1980) in our experiment. There is some
modest decadal variability in Arctic surface air temperatures during
1980–2016 overall in the Counterfactual runs, though these are weak in
amplitude indicating that natural variability of boundary forcings such as
might arise from natural El Ni~no-Southern Oscillation (ENSO) cycles or
Pacific decadal SST variations could not have appreciably contributed to
2016 extreme Arctic warmth. We note also that there is a slight warming
trend of Arctic surface temperatures in the Counterfactual experiments.
This feature is likely a climate change signal rather than a symptom of
internal natural variability owing to our assumptions for defining the
counterfactual SSTs (see Section 2).

Moreover, to depict the uncertainty arising from the use of different
models, we have repeated our analysis using a second model – Com-
munity Atmosphere Model Version 5 (CAM5; Neale et al., 2010). The
CAM5 experiments follow the protocol of the ECHAM5 experiments
using the same forcing and surface boundary conditions. Figure S2 shows
the time series of Arctic annual surface air temperature anomalies from
6

the ensemble of CAM5 Factual, Clim-Polar and Counterfactual experi-
ments. The forced signal of 2016 Arctic surface temperature anomaly is
2.8 ± 0.1 �C in the CAM5 Factual experiments and is 1.4 ± 0.1 �C in the
CAM5 Clim-Polar experiments, implying that drivers outside the Arctic
explain half of the total temperature change. These findings are quali-
tatively in agreement with the ECHAM5 results, establishing the
robustness of our AMIP experiments.

To further characterize the 2016 extreme Arctic warmth, we plot in
Fig. 5 the frequency distributions of annual surface temperature
comprised of the ECHAM5 individual 30 runs for each of the four sim-
ulations that employ various boundary forcings. The result reveals a
progressive increase in the magnitude of Arctic warmth as more features
of the actual 2016 boundary forcings are incorporated into the experi-
ments. Neither the Counterfactual nor the Clim-Polar experiments yield a
statistical probability of 2016 Arctic surface temperatures that is
consistent with the observations, even when accounting for the consid-
erable uncertainty in the actual magnitude of the 2016 Arctic warmth
(see tick marks in Fig. 5). In other words, the probability for Arctic sur-
face temperature as large as occurred in 2016 is effectively nil under late-
19th century boundary conditions and also under 2016 boundary con-
ditions that fail to include the 2016 state of depleted Arctic sea ice vol-
ume. Under the more realistic assumption of a reduction in Arctic sea ice
extent (but no change in sea ice thickness), the observed 2016 Arctic
warmth falls within the population sample of Factual (2 m ice) simula-
tions, though having a low probability outcome. Those experiments
would require one to invoke the presence of a strong articulation of in-
ternal atmospheric variability during 2016, in addition to a strong
boundary forced warmth, to explain the observed extreme event. Yet,
when incorporating a reduction in sea ice thickness, the extreme
magnitude of the 2016 warmth is found to be close to the mean value of
the probability distribution of the Factual (1 m ice) simulations. Those
experiments indicate the observed extreme event was almost entirely a
forced response to boundary conditions, though we caution that some
have been smoothed using a Gaussian filter.



Fig. 6. (Top) As in Fig. 4, but for the CESM1 Large Ensemble subjected to “All Forcings”
during historical period and RCP8.5 emission scenario after 2005. (Bottom) Extension of
the top panel time series to 2052. The red dashed line denotes the mean of the five
reanalysis Arctic surface temperature anomalies in 2016 (3.2 �C).

Table 2
2016 Arctic near-surface air temperature anomalies (�C) in the reanalysis and
ECHAM5 ensemble means averaged annually (ANN) and over four seasons [January-
February-March (JFM); April-May-June (AMJ); July-August-September (JAS); October-
November-December (OND)].

ANN JFM AMJ JAS OND

Reanalysis average 3.2 4.2 2.6 1.8 4.2
Factual (1-m ice) 3.1 4.4 1.7 1.3 4.8
Factual (2-m ice) 2.4 2.7 1.4 1.2 4.0
Clim-Polar 1.1 1.4 1.0 0.7 1.2
Counterfactual �0.1 �0.1 �0.1 �0.2 0.0
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fraction of the sea ice conditions in particular may nonetheless represent
effects of internal climate drivers rather than being symptoms solely of
long-term climate change.

In addition to the annual mean temperature diagnostics, we also
examined the seasonal contributions to the 2016 extreme warmth in
ECHAM5 by calculating the Arctic surface temperature anomalies and
the model-based estimates of different physical contributions for four
seasons, the results of which are shown in Table 2. The largest observed
and simulated Arctic temperature anomalies occur in the January-
February-March (JFM) and October-November-December (OND) sea-
sons, while the weakest anomalies occur in the July-August-September
(JAS) season. The simulated seasonality is very realistic in this regard
when the model is driven by the full changes in boundary forcings. The
largest fraction of the Arctic warmth that is explained by sea ice loss
occurs in the OND season. There is comparatively little seasonality in the
Arctic surface warming in the experiments that do not include sea ice
loss. This is physically consistent with the fact that the most depleted
state of Arctic sea ice occurs in OND and large surface energy flux
anomalies associated with such loss are expected to occur in late fall/
early winter.

4. Summary and discussion

A suite of historical atmospheric model simulations using a hierarchy
of global boundary forcings has been introduced, and were applied to
understanding the cause for extremely warm Arctic surface temperature
during 2016. All experiments are based on the ECHAM5 model, span the
period 1979–2016, and are routinely updated as part of the Climate of
the Twentieth Century Detection and Attribution Project. As part of this
project, on-line tools have been generated to permit interactive explor-
atory analysis of the model data which the user can also download in
order to conduct more detailed study via the data repository https://
www.esrl.noaa.gov/psd/repository/facts/.

In their Factual (standard AMIP) configuration, the simulations
facilitate diagnosis of the role that known variations in global boundary
forcings including SSTs, sea ice concentration, and GHG and ozone have
played in climate variability since 1979. Availability of a 30-member
ensemble permits one to assess the magnitude and pattern of forced
signals relative to those arising from purely internal atmospheric vari-
ability. In a parallel suite referred to as the Counterfactual configuration,
boundary forcings are adjusted to an estimate of their late-19th century
condition by removing long-term trends in SSTs, sea ice concentration,
GHGs and ozone. The residual boundary forcings so constructed attempt
to retain the internal fluctuations of climate drivers such as the ENSO
cycle and natural decadal ocean variability. Factual and Counterfactual
experiments can then be intercompared in order to estimate effects of
long-term change on weather and climate conditions. A third suite of
simulations, which were especially useful in addressing causes for the
extreme 2016 Arctic warmth, are identical to the Factual runs except that
sea ice concentrations are set to a fixed climatological condition. Factual
and Clim-Polar experiments are intercompared in order to estimate ef-
fects of long-term change in Arctic boundary forcings on global weather
and climate conditions, a question of active scientific research and debate
(e.g. Cohen et al., 2014; Overland et al., 2016b).
7

Using these model-based research tools, our study sought to explain
the intensity and the timing for extreme Arctic warmth in 2016. The
principal result was that much of the magnitude (~3.2 �C) of surface
temperature anomalies averaged poleward of 65�N in 2016 was forced
by a global pattern of boundary conditions. The ECHAM5 Factual sim-
ulations revealed that three quarters of the magnitude of 2016 annual
mean Arctic warmth was likely a forced signal, with an even larger
fraction when considering reductions in sea ice thickness. The most
important driver was Arctic sea ice loss which accounted for 60–70% of
the 2016 Arctic warmth, with estimates sensitive to assumptions of sea
ice thickness change. About 30–40% of the overall forced warming signal
likely arose from drivers outside of the Arctic. Our experiments indicated
that the extreme magnitude of the 2016 Arctic warmth could not have
occurred without consideration of the Arctic sea ice volume loss.
Importantly, Counterfactual experiments indicated that internal vari-
ability alone, even of an extreme articulation, could not explain that
occurrence of the 2016 extreme warmth. The timing of the event in 2016
is found to be reconcilable with an increasing trend in the overall
boundary forced warming – the Factual experiment's ensemble mean
Arctic warmth during 2016 exceeded that of any year since 1979.We also
repeated our analysis using a second model – CAM5, and confirmed our
finding from the ECHAM5 analysis that Arctic boundary condition is a
necessary condition to explain the extreme event's magnitude. However,
Arctic sea ice loss alone is an insufficient factor in both models revealing
that drivers outside the Arctic must also have been necessary factors in
causing the 2016 extreme warmth.

While these atmospheric modeling methods provide considerable
insights on principal causes for the extreme 2016 Arctic warmth, their
design has various shortcomings that make more definitive in-
terpretations difficult. In particular, given that the sea ice loss is identi-
fied as a key driver herein, it is important to ascertain its cause. It is
almost certain that weather-related atmospheric driving affected sea ice
loss in 2016 and contributed to its extreme low volumes (see e.g. Kim
et al., 2017), and there is also evidence that about 40% of post-1979 sea
ice decline has resulted from internal variability rather than climate
change alone (Ding et al., 2017). In this sense, our estimate that at least
three quarters of Arctic surface warmth in 2016 was boundary forced, the
majority of which was linked to sea ice loss, should not be viewed as an
equivalent statement regarding the magnitude of human-induced climate
change driving. Our results also reveal that a “true” factual climate
simulation should also include changes in observed sea ice thickness and
not just changes in sea ice extent.

https://www.esrl.noaa.gov/psd/repository/facts/
https://www.esrl.noaa.gov/psd/repository/facts/
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This issue is clarified by examining Arctic surface temperature time
series simulated in a coupled ocean-atmosphere model based on the
NCAR Community Earth System Model (CESM1) Large Ensemble that
has been forced by the time varying greenhouse gases, aerosols, and
volcanic and solar variability (Kay et al., 2015). Figure 6 (top) compares
the CESM1 1980–2016 annual Arctic surface air temperature time se-
ries (black curves) with the average of reanalysis products (red curve).
The spread in Arctic surface air temperatures among the individual runs
is appreciably larger (2-fold) compared to that in ECHAM5, which we
believe is principally due to coupled internal sea ice variability. The
CESM1 2016 Arctic warmth of 2.0 ± 0.2 �C is lower than the ECHAM5
Factual simulation for 2016, even though CESM1 has climate sensitivity
greater than the average of CMIP5 models (Hurrell et al., 2013). Based
on the ratio of the CESM1 ensemble mean anomaly to the observed
temperature anomaly, we are able to estimate that human-induced
climate change may have driven about 61% ± 5% of the 2016 Arctic
warmth. Such a view is consistent with evidence for an appreciable
internal component of the 2016 sea ice loss itself, the result of which
that would have been to magnify the warm signal in the ECHAM5 ex-
periments wherein those sea ice conditions were specified. Such an
interpretation is consistent with the fact that the observed 2016 warmth
is an extreme event relative to the ensemble spread of the CESM1
coupled simulations. The atmospheric and coupled model results for
2016 Arctic warmth are thus reconcilable when considering that the
former experiments imposed an Arctic boundary condition having an
appreciable internally driven origin.

While internal coupled processes undoubtedly contributed to the
extreme magnitude of Arctic warmth in 2016, such a condition is pro-
jected to become the typical annual surface temperature within a mere
decade, according to the CESM1 projections under an RCP8.5 emissions
scenario (Fig. 6, bottom). Further, by the middle of the 21st century, the
typical annually averaged Arctic surface temperature anomaly is pro-
jected to be nearly doubly that which occurred in 2016. This remarkable
rate of warming in the Arctic is closely tied to the projected loss in Arctic
sea ice (Jahn et al., 2016). Whereas the role of internal coupled vari-
ability was appreciable in explaining the 2016 event intensity, it is clear
that by mid-21st Century the forced signal of warmth will far exceed the
magnitude of internal variability.
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